Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
1.
J Am Soc Nephrol ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656806

RESUMO

BACKGROUND: The severity of chronic histopathologic lesions on kidney biopsy is independently associated with higher risk of progressive chronic kidney disease (CKD). Because kidney biopsies are invasive, identification of blood markers that report on underlying kidney histopathology has the potential to enhance CKD care. METHODS: We examined the association between 6592 plasma protein levels measured by aptamers and the severity of interstitial fibrosis and tubular atrophy (IFTA), glomerulosclerosis, arteriolar sclerosis, and arterial sclerosis among 434 participants of the Boston Kidney Biopsy Cohort. For proteins significantly associated with at least one histologic lesion, we assessed renal arteriovenous protein gradients among 21 individuals who had undergone invasive catheterization and assessed the expression of the cognate gene among 47 individuals with single cell RNA sequencing data in the Kidney Precision Medicine Project. RESULTS: In models adjusted for estimated glomerular filtration rate (eGFR), proteinuria, and demographic factors, we identified 35 proteins associated with one or more chronic histologic lesions, including 20 specific for IFTA, 8 specific for glomerulosclerosis, and 1 specific for arteriolar sclerosis. In general, higher levels of these proteins were associated with more severe histologic score and lower eGFR. Exceptions included testican-2 and NELL1, which were associated with less glomerulosclerosis and IFTA, respectively, and higher eGFR; notably, both of these proteins demonstrated significantly higher levels from artery to renal vein, demonstrating net kidney release. In the Kidney Precision Medicine Project, 13 of the 35 protein hits had cognate gene expression enriched in one or more cell types in the kidney, including podocyte expression of select glomerulosclerosis markers (including testican-2) and tubular expression of several IFTA markers (including NELL1). CONCLUSIONS: Proteomic analysis identified circulating proteins associated with chronic histopathologic lesions, some of which have concordant site-specific expression within the kidney.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38572729

RESUMO

PURPOSE OF REVIEW: Disruptions of phosphate homeostasis are associated with a multitude of diseases with insufficient treatments. Our knowledge regarding the mechanisms underlying metazoan phosphate homeostasis and sensing is limited. Here, we highlight four major advancements in this field during the last 12-18 months. RECENT FINDINGS: First, kidney glycolysis senses filtered phosphate, which results in the release of glycerol 3-phosphate (G-3-P). Circulating G-3-P then stimulates synthesis of the phosphaturic hormone fibroblast growth factor 23 in bone. Second, the liver serves as a postprandial phosphate reservoir to limit serum phosphate excursions. It senses phosphate ingestion and triggers renal excretion of excess phosphate through a nerve-dependent mechanism. Third, phosphate-starvation in cells massively induces the phosphate transporters SLC20A1/PiT1 and SLC20A2/PiT2, implying direct involvement of cellular phosphate sensing. Under basal phosphate-replete conditions, PiT1 is produced but immediately destroyed, which suggests a novel mechanism for the regulation of PiT1 abundance. Fourth, Drosophila melanogaster intestinal cells contain novel organelles called PXo bodies that limit intracellular phosphate excursions. Phosphate starvation leads to PXo body dissolution, which triggers midgut proliferation. SUMMARY: These studies have opened novel avenues to dissect the mechanisms that govern metazoan phosphate sensing and homeostasis with the potential to identify urgently needed therapeutic targets.

3.
Sci Rep ; 14(1): 8427, 2024 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600145

RESUMO

Impaired physical function contributes to falls, fractures, and mortality among patients undergoing dialysis. Using a metabolomic approach, we identified metabolite alterations and effect size-based composite scores for constructs of impaired gait speed and grip strength. 108 participants incident to dialysis had targeted plasma metabolomics via liquid chromatography-mass spectrometry and physical function assessed (i.e., 4 m walk, handgrip strength). Physical function measures were categorized as above/ below median, with grip utilizing sex-based medians. To develop composite scores, metabolites were identified via Wilcoxon uncorrected p < 0.05 and effect size > 0.40. Receiver operating characteristic analyses tested whether scores differentiated between above/below function groups. Participants were 54% male, 77% Black and 53 ± 14 y with dialysis vintage of 101 ± 50 days. Median (IQR) grip strength was 35.5 (11.1) kg (males) and 20 (8.4) kg (females); median gait speed was 0.82 (0.34) m/s. Of 246 measured metabolites, composite scores were composed of 22 and 12 metabolites for grip strength and gait speed, respectively. Area under the curve for metabolite composite was 0.88 (gait) and 0.911 (grip). Composite scores of physical function performed better than clinical parameters alone in patients on dialysis. These results provide potential pathways for interventions and needed validation in an independent cohort.


Assuntos
Força da Mão , Diálise Renal , Feminino , Humanos , Masculino , Marcha , Caminhada , Velocidade de Caminhada
4.
J Am Soc Nephrol ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38640019

RESUMO

BACKGROUND: Proteins and metabolites play crucial roles in various biological functions and are frequently interconnected through enzymatic or transport processes. METHODS: We present an integrated analysis of 4,091 proteins and 630 metabolites in the Chronic Renal Insufficiency Cohort Study (N=1,708; average follow-up for kidney failure [KF], 9.5 years, with 537 events). Proteins and metabolites were integrated using an unsupervised clustering method and we assessed associations between clusters and CKD progression and kidney failure using Cox proportional hazards models. Analyses were adjusted for demographics and risk factors including the estimated glomerular filtration rate (eGFR) and urine protein-creatinine ratio. Associations were identified in a discovery sample (random two-thirds, N=1139) and then evaluated in a replication sample (one-third, N=569). RESULTS: We identified 139 modules of correlated proteins and metabolites, which were represented by their principal components (PC). Modules and PC loadings were projected onto the replication sample which demonstrated a consistent network structure. Two modules, representing a total of 236 proteins and 82 metabolites, were robustly associated with both CKD progression and kidney failure in both discovery and validation samples. Using gene set enrichment, several transmembrane related terms were identified as over-represented in these modules. Transmembrane-ephrin receptor activity displayed the largest odds (OR = 13.2, P-value = 5.5×10 -5 ). A module containing CRIM1 and NPNT expressed in podocytes demonstrated particularly strong associations with kidney failure (P-value = 2.6×10 -5 ). CONCLUSIONS: This study demonstrates that integration of the proteome and metabolome can identify functions of pathophysiologic importance in kidney disease.

5.
Am J Kidney Dis ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38518919

RESUMO

RATIONALE & OBJECTIVE: HbA1c is widely used to estimate glycemia, yet it is less reliable in patients with chronic kidney disease (CKD). There is growing interest in the complementary use of glycated albumin (GA) to improve glycemic monitoring and risk stratification. However, whether GA associates with clinical outcomes in a non-dialysis dependent CKD population remains unknown. STUDY DESIGN: Prospective cohort study. SETTING: & Participants: 3110 participants with CKD from the Chronic Renal Insufficiency Cohort study. EXPOSURE: Baseline GA levels. OUTCOMES: Incident end-stage kidney disease (ESKD), cardiovascular disease (CVD) events, and all-cause mortality. ANALYTICAL APPROACH: Cox proportional hazards regression. RESULTS: Participant characteristics included mean age 59.0 (SD 10.8) years; 1357 (43.6%) female; 1550 (49.8%) with diabetes. The median GA was 18.7 (interquartile range, 15.8-23.3)%. During an average 7.9-year follow-up, there were 980 ESKD events, 968 CVD events, and 1084 deaths. Higher GA levels were associated with greater risks of all outcomes, regardless of diabetes status: hazard ratios for ESKD, CVD, and death among participants with the highest quartile compared with quartile 2 (reference) were 1.42 (95%CI, 1.19-1.69), 1.67 (CI, 1.39-2.01), and 1.63 (CI, 1.37-1.94), respectively. The associations with CVD and death appeared J-shaped, with increased risk also seen at the lowest GA levels. Among patients with coexisting CKD and diabetes, the associations of GA with outcomes remained significant even after adjusting for HbA1c. For each outcome, we observed a significant increase in the fraction of new prognostic information when both GA and HbA1c were added to models. LIMITATIONS: Lack of longitudinal GA measurements; HbA1c measurements were largely unavailable in participants without diabetes. CONCLUSIONS: Among patients with CKD, GA levels were independently associated with risks of ESKD, CVD, and mortality, regardless of diabetes status. GA added prognostic value to HbA1c among patients with coexisting CKD and diabetes.

6.
JCI Insight ; 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38530370

RESUMO

Fibroblast Growth Factor 23 (FGF23) production has recently been shown to increase downstream of G⍺q/11-PKC signaling in osteocytes. Inactivating mutations in the gene encoding G⍺11 (GNA11) cause familial hypocalciuric hypercalcemia (FHH) due to impaired calcium-sensing receptor signaling. We explored the impact of G⍺11 deficiency on FGF23 production in mice with heterozygous (Gna11+/-) or homozygous (Gna11-/-) ablation of Gna11. Both Gna11+/- and Gna11-/- mice demonstrated hypercalcemia and mildly raised parathyroid hormone levels, consistent with FHH. Strikingly, these mice also displayed increased serum levels of total and intact FGF23 and hypophosphatemia. Gna11-/- mice showed augmented Fgf23 mRNA levels in the liver and heart, but not in bone or bone marrow, and evidence of systemic inflammation with elevated serum IL1ß levels. Furin gene expression was significantly increased in the Gna11-/- liver, suggesting enhanced FGF23 cleavage despite the observed rise in intact FGF23 levels. Gna11-/- mice had normal renal function and reduced serum levels of glycerol-3-phosphate, excluding kidney injury as the primary cause of elevated intact FGF23 levels. Thus, G⍺11 ablation caused systemic inflammation and excess serum FGF23 in mice, suggesting that FHH patients, at least those with GNA11 mutations, may be at risk for these complications.

7.
Kidney Med ; 6(4): 100793, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38495599

RESUMO

Rationale & Objective: While urine excretion of nitrogen estimates the total protein intake, biomarkers of specific dietary protein sources have been sparsely studied. Using untargeted metabolomics, this study aimed to identify serum metabolomic markers of 6 protein-rich foods and to examine whether dietary protein-related metabolites are associated with incident chronic kidney disease (CKD). Study Design: Prospective cohort study. Setting & Participants: A total of 3,726 participants from the Atherosclerosis Risk in Communities study without CKD at baseline. Exposures: Dietary intake of 6 protein-rich foods (fish, nuts, legumes, red and processed meat, eggs, and poultry), serum metabolites. Outcomes: Incident CKD (estimated glomerular filtration rate < 60 mL/min/1.73 m2 with ≥25% estimated glomerular filtration rate decline relative to visit 1, hospitalization or death related to CKD, or end-stage kidney disease). Analytical Approach: Multivariable linear regression models estimated cross-sectional associations between protein-rich foods and serum metabolites. C statistics assessed the ability of the metabolites to improve the discrimination of highest versus lower 3 quartiles of intake of protein-rich foods beyond covariates (demographics, clinical factors, health behaviors, and the intake of nonprotein food groups). Cox regression models identified prospective associations between protein-related metabolites and incident CKD. Results: Thirty significant associations were identified between protein-rich foods and serum metabolites (fish, n = 8; nuts, n = 5; legumes, n = 0; red and processed meat, n = 5; eggs, n = 3; and poultry, n = 9). Metabolites collectively and significantly improved the discrimination of high intake of protein-rich foods compared with covariates alone (difference in C statistics = 0.033, 0.051, 0.003, 0.024, and 0.025 for fish, nuts, red and processed meat, eggs, and poultry-related metabolites, respectively; P < 1.00 × 10-16 for all). Dietary intake of fish was positively associated with 1-docosahexaenoylglycerophosphocholine (22:6n3), which was inversely associated with incident CKD (HR, 0.82; 95% CI, 0.75-0.89; P = 7.81 × 10-6). Limitations: Residual confounding and sample-storage duration. Conclusions: We identified candidate biomarkers of fish, nuts, red and processed meat, eggs, and poultry. A fish-related metabolite, 1-docosahexaenoylglycerophosphocholine (22:6n3), was associated with a lower risk of CKD.


In this study, we aimed to identify associations between protein-rich foods (fish, nuts, legumes, red and processed meat, eggs, and poultry) and serum metabolites, which are small biological molecules involved in metabolism. Metabolites significantly associated with a protein-rich food individually and collectively improved the discrimination of the respective protein-rich food, suggesting that these metabolites should be prioritized in future diet biomarker research. We also studied associations between significant diet-related metabolites and incident kidney disease. One fish-related metabolite was associated with a lower kidney disease risk. This finding supports the recent nutritional guidelines recommending a Mediterranean diet, which includes fish as the main dietary protein source.

8.
Am J Kidney Dis ; 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38281681
9.
Am J Kidney Dis ; 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38266973

RESUMO

RATIONALE & OBJECTIVE: The toxins that contribute to uremic symptoms in patients with chronic kidney disease (CKD) are unknown. We sought to apply complementary statistical modeling approaches to data from untargeted plasma metabolomic profiling to identify solutes associated with uremic symptoms in patients with CKD. STUDY DESIGN: Cross-sectional. SETTING & PARTICIPANTS: 1,761 Chronic Renal Insufficiency Cohort (CRIC) participants with CKD not treated with dialysis. PREDICTORS: Measurement of 448 known plasma metabolites. OUTCOMES: The uremic symptoms of fatigue, anorexia, pruritus, nausea, paresthesia, and pain were assessed by single items on the Kidney Disease Quality of Life-36 instrument. ANALYTICAL APPROACH: Multivariable adjusted linear regression, least absolute shrinkage and selection operator linear regression, and random forest models were used to identify metabolites associated with symptom severity. After adjustment for multiple comparisons, metabolites selected in at least 2 of the 3 modeling approaches were deemed "overall significant." RESULTS: Participant mean estimated glomerular filtration rate was 43mL/min/1.73m2, with 44% self-identifying as female and 41% as non-Hispanic Black. The prevalence of uremic symptoms ranged from 22% to 55%. We identified 17 metabolites for which a higher level was associated with greater severity of at least one uremic symptom and 9 metabolites inversely associated with uremic symptom severity. Many of these metabolites exhibited at least a moderate correlation with estimated glomerular filtration rate (Pearson's r≥0.5), and some were also associated with the risk of developing kidney failure or death in multivariable adjusted Cox regression models. LIMITATIONS: Lack of a second independent cohort for external validation of our findings. CONCLUSIONS: Metabolomic profiling was used to identify multiple solutes associated with uremic symptoms in adults with CKD, but future validation and mechanistic studies are needed. PLAIN-LANGUAGE SUMMARY: Individuals living with chronic kidney disease (CKD) often experience symptoms related to CKD, traditionally called uremic symptoms. It is likely that CKD results in alterations in the levels of numerous circulating substances that, in turn, cause uremic symptoms; however, the identity of these solutes is not known. In this study, we used metabolomic profiling in patients with CKD to gain insights into the pathophysiology of uremic symptoms. We identified 26 metabolites whose levels were significantly associated with at least one of the symptoms of fatigue, anorexia, itchiness, nausea, paresthesia, and pain. The results of this study lay the groundwork for future research into the biological causes of symptoms in patients with CKD.

11.
Ann Rheum Dis ; 83(3): 351-359, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38123922

RESUMO

OBJECTIVE: To compare two long-term remission maintenance strategies for antineutrophil cytoplasmic antibody (ANCA) vasculitis. METHODS: We conducted a prospective, single-centre, open-label, randomised controlled trial of patients with ANCA vasculitis in remission after completing at least 2 years of fixed-schedule rituximab. In the B cell arm, rituximab was reinfused upon B cell repopulation; in the ANCA arm, rituximab was reinfused upon significant rise in ANCA level. Evaluations were conducted every 3 months. The primary endpoint was clinical relapse, defined as a modified BVAS/WG >0 by 36 months. Secondary endpoints included serious adverse events (SAEs) and rituximab exposure. RESULTS: 115 patients were enrolled. Median follow-up time was 4.1 years (IQR 2.5-5.0). By Kaplan-Meier analysis, 4.1% (95% CI 1.0 to 15.6) of patients had a clinical relapse in the B cell arm, compared with 20.5% (95% CI 11.9 to 34.1) in the ANCA arm, at 3 years after study entry (log-rank p=0.045). Total SAEs, including infectious SAEs, and deaths did not differ. The number of SAEs due to COVID-19 was higher in the B cell arm (p=0.049). In the B cell arm, patients received a mean of 3.6 (SD 2.4) infusions (3.6 g) per person over the median study follow-up time of 4.1 years, compared with 0.5 (SD 1.4) infusions (0.5 g) per patient in the ANCA arm (p<0.001). CONCLUSIONS: Rituximab dosed for B cell repopulation results in fewer clinical relapses than when dosed for a rise in ANCA level in maintenance of remission for ANCA vasculitis. Overall safety was equivalent; SAEs due to COVID-19 and rituximab exposure were higher with the B cell strategy. TRIAL REGISTRATION NUMBER: NCT02749292.


Assuntos
Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos , COVID-19 , Humanos , Rituximab/uso terapêutico , Anticorpos Anticitoplasma de Neutrófilos , Estudos Prospectivos , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/tratamento farmacológico , Indução de Remissão , Recidiva , Imunossupressores/efeitos adversos , Resultado do Tratamento
12.
Cell Metab ; 36(1): 144-158.e7, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38101397

RESUMO

Common genetic variants in glucokinase regulator (GCKR), which encodes GKRP, a regulator of hepatic glucokinase (GCK), influence multiple metabolic traits in genome-wide association studies (GWASs), making GCKR one of the most pleiotropic GWAS loci in the genome. It is unclear why. Prior work has demonstrated that GCKR influences the hepatic cytosolic NADH/NAD+ ratio, also referred to as reductive stress. Here, we demonstrate that reductive stress is sufficient to activate the transcription factor ChREBP and necessary for its activation by the GKRP-GCK interaction, glucose, and ethanol. We show that hepatic reductive stress induces GCKR GWAS traits such as increased hepatic fat, circulating FGF21, and circulating acylglycerol species, which are also influenced by ChREBP. We define the transcriptional signature of hepatic reductive stress and show its upregulation in fatty liver disease and downregulation after bariatric surgery in humans. These findings highlight how a GCKR-reductive stress-ChREBP axis influences multiple human metabolic traits.


Assuntos
Estudo de Associação Genômica Ampla , Glucoquinase , Humanos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Glucoquinase/genética , Glucoquinase/metabolismo , Glucose/metabolismo , Fígado/metabolismo , Fatores de Transcrição/metabolismo
13.
J Ren Nutr ; 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37944769

RESUMO

OBJECTIVE: Evidence regarding the efficacy of a low-protein diet for patients with CKD is inconsistent and recommending a low-protein diet for pediatric patients is controversial. There is also a lack of objective biomarkers of dietary intake. The purpose of this study was to identify plasma metabolites associated with dietary intake of protein and to assess whether protein-related metabolites are associated with CKD progression. METHODS: Nontargeted metabolomics was conducted in plasma samples from 484 Chronic Kidney Disease in Children (CKiD) participants. Multivariable linear regression estimated the cross-sectional association between 949 known, nondrug metabolites and dietary intake of total protein, animal protein, plant protein, chicken, dairy, nuts and beans, red and processed meat, fish, and eggs, adjusting for demographic, clinical, and dietary covariates. Cox proportional hazards models assessed the prospective association between protein-related metabolites and CKD progression defined as the initiation of kidney replacement therapy or 50% eGFR reduction, adjusting for demographic and clinical covariates. RESULTS: One hundred and twenty-seven (26%) children experienced CKD progression during 5 years of follow-up. Sixty metabolites were significantly associated with dietary protein intake. Among the 60 metabolites, 10 metabolites were significantly associated with CKD progression (animal protein: n = 1, dairy: n = 7, red and processed meat: n = 2, nuts and beans: n = 1), including one amino acid, one cofactor and vitamin, 4 lipids, 2 nucleotides, one peptide, and one xenobiotic. 1-(1-enyl-palmitoyl)-2-oleoyl-glycerophosphoethanolamine (GPE, P-16:0/18:1) was positively associated with dietary intake of red and processed meat, and a doubling of its abundance was associated with 88% higher risk of CKD progression. 3-ureidopropionate was inversely associated with dietary intake of red and processed meat, and a doubling of its abundance was associated with 48% lower risk of CKD progression. CONCLUSIONS: Untargeted plasma metabolomic profiling revealed metabolites associated with dietary intake of protein and CKD progression in a pediatric population.

14.
Artigo em Inglês | MEDLINE | ID: mdl-37871960

RESUMO

BACKGROUND: Children with CKD are at risk for impaired neurocognitive functioning. We investigated metabolomic associations with neurocognition in children with CKD. METHODS: We leveraged data from the Chronic Kidney Disease in Children (CKiD) study and the Neurocognitive Assessment and Magnetic Resonance Imaging Analysis of Children and Young Adults with Chronic Kidney Disease (NiCK) study. CKiD is a multi-institutional cohort that enrolled children aged 6 months to 16 years with eGFR 30-90 ml/min per 1.73 m 2 ( n =569). NiCK is a single-center cross-sectional study of participants aged 8-25 years with eGFR<90 ml/min per 1.73 m 2 ( n =60) and matched healthy controls ( n =67). Untargeted metabolomic quantification was performed on plasma (CKiD, 622 metabolites) and serum (NiCK, 825 metabolites) samples. Four neurocognitive domains were assessed: intelligence, attention regulation, working memory, and parent ratings of executive function. Repeat assessments were performed in CKiD at 2-year intervals. Linear regression and linear mixed-effects regression analyses adjusting for age, sex, delivery history, hypertension, proteinuria, CKD duration, and glomerular versus nonglomerular diagnosis were used to identify metabolites associated with neurocognitive z-scores. Analyses were performed with and without adjustment for eGFR. RESULTS: There were multiple metabolite associations with neurocognition observed in at least two of the analytic samples (CKiD baseline, CKiD follow-up, and NiCK CKD). Most of these metabolites were significantly elevated in children with CKD compared with healthy controls in NiCK. Notable signals included associations with parental ratings of executive function: phenylacetylglutamine, indoleacetylglutamine, and trimethylamine N-oxide-and with intelligence: γ -glutamyl amino acids and aconitate. CONCLUSIONS: Several metabolites were associated with neurocognitive dysfunction in pediatric CKD, implicating gut microbiome-derived substances, mitochondrial dysfunction, and altered energy metabolism, circulating toxins, and redox homeostasis.

15.
JCI Insight ; 8(17)2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37681408

RESUMO

Intact fibroblast growth factor 23 (iFGF23) is a phosphaturic hormone that is cleaved by furin into N-terminal and C-terminal fragments. Several studies have implicated vitamin D in regulating furin in infections. Thus, we investigated the effect of 1,25-dihydroxyvitamin D3 [1,25(OH)2D] and the vitamin D receptor (VDR) on furin-mediated iFGF23 cleavage. Mice lacking VDR (Vdr-/-) had a 25-fold increase in iFGF23 cleavage, with increased furin levels and activity compared with wild-type (WT) littermates. Inhibition of furin activity blocked the increase in iFGF23 cleavage in Vdr-/- animals and in a Vdr-knockdown osteocyte OCY454 cell line. Chromatin immunoprecipitation revealed VDR binding to DNA upstream of the Furin gene, with more transcription in the absence of VDR. In WT mice, furin inhibition reduced iFGF23 cleavage, increased iFGF23, and reduced serum phosphate levels. Similarly, 1,25(OH)2D reduced furin activity, decreased iFGF23 cleavage, and increased total FGF23. In a post hoc analysis of a randomized clinical trial, we found that ergocalciferol treatment, which increased serum 1,25(OH)2D, significantly decreased serum furin activity and iFGF23 cleavage, compared with placebo. Thus, 1,25(OH)2D inhibits iFGF23 cleavage via VDR-mediated suppression of Furin expression, thereby providing a mechanism by which vitamin D can augment phosphaturic iFGF23 levels.


Assuntos
Calcitriol , Furina , Animais , Camundongos , Calcitriol/farmacologia , Linhagem Celular , Imunoprecipitação da Cromatina , Vitamina D
16.
Kidney Med ; 5(10): 100714, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37711886

RESUMO

Rationale & Objective: Proteomics could provide pathophysiologic insight into the increased risk of mortality in patients with chronic kidney disease (CKD). This study aimed to investigate associations between the circulating proteome and all-cause mortality among patients with CKD. Study Design: Observational cohort study. Setting & Participants: Primary analysis in 703 participants in the African American Study of Kidney Disease and Hypertension (AASK) and validation in 1,628 participants with CKD in the Atherosclerosis Risk in Communities (ARIC) study who attended visit 5. Exposure: Circulating proteins. Outcome: All-cause mortality. Analytical Approach: Among AASK participants, we evaluated the associations of 6,790 circulating proteins with all-cause mortality using multivariable Cox proportional hazards models. Proteins with significant associations were further studied in ARIC Visit 5 participants with CKD. Results: In the AASK cohort, the mean age was 54.5 years, 271 (38.5%) were women, and the mean measured glomerular filtration rate (GFR) was 46 mL/min/1.73 m2. The median follow-up was 9.6 years, and 7 distinct proteins were associated with all-cause mortality at the Bonferroni-level threshold (P < 0.05 of the 6,790) after adjustment for demographics and clinical factors, including baseline measured estimated GFR and proteinuria. In the ARIC visit 5 cohort, the mean age was 77.2 years, 903 (55.5%) were women, the mean estimated GFR was 54 mL/min/1.73 m2 and median follow-up was 6.9 years. Of the 7 proteins found in AASK, 3 (ß2-microglobulin, spondin-1, and N-terminal pro-brain natriuretic peptide) were available in the ARIC data, with all 3 significantly associated with death in ARIC. Limitations: Possibility of unmeasured confounding. Cause of death was not known. Conclusions: Using large-scale proteomic analysis, proteins were reproducibly associated with mortality in 2 cohorts of participants with CKD. Plain-Language Summary: Patients with chronic kidney disease (CKD) have a high risk of premature death, with various pathophysiological processes contributing to this increased risk of mortality. This observational cohort study aimed to investigate the associations between circulating proteins and all-cause mortality in patients with CKD using large-scale proteomic analysis. The study analyzed data from the African American Study of Kidney Disease and Hypertension (AASK) study and validated the findings in the Atherosclerosis Risk in Communities (ARIC) Study. A total of 6,790 circulating proteins were evaluated in AASK, and 7 proteins were significantly associated with all-cause mortality. Three of these proteins (ß2-microglobulin, spondin-1, and N-terminal pro-brain natriuretic peptide (BNP)) were also measured in ARIC and were significantly associated with death. Additional studies assessing biomarkers associated with mortality among patients with CKD are needed to evaluate their use in clinical practice.

17.
J Nutr ; 153(10): 2994-3002, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37541543

RESUMO

BACKGROUND: Dairy consumption is related to chronic disease risk; however, the measurement of dairy consumption has largely relied upon self-report. Untargeted metabolomics allows for the identification of objective markers of dietary intake. OBJECTIVES: We aimed to identify associations between dietary dairy intake (total dairy, low-fat dairy, and high-fat dairy) and serum metabolites in 2 independent study populations of United States adults. METHODS: Dietary intake was assessed with food frequency questionnaires. Multivariable linear regression models were used to estimate cross-sectional associations between dietary intake of dairy and 360 serum metabolites analyzed in 2 subgroups of the Atherosclerosis Risk in Communities study (ARIC; n = 3776). Results from the 2 subgroups were meta-analyzed using fixed effects meta-analysis. Significant meta-analyzed associations in the ARIC study were then tested in the Bogalusa Heart Study (BHS; n = 785). RESULTS: In the ARIC study and BHS, the mean age was 54 and 48 years, 61% and 29% were Black, and the mean dairy intake was 1.7 and 1.3 servings/day, respectively. Twenty-nine significant associations between dietary intake of dairy and serum metabolites were identified in the ARIC study (total dairy, n = 14; low-fat dairy, n = 10; high-fat dairy, n = 5). Three associations were also significant in BHS: myristate (14:0) was associated with high-fat dairy, and pantothenate was associated with total dairy and low-fat dairy, but 23 of the 27 associations significant in the ARIC study and tested in BHS were not associated with dairy in BHS. CONCLUSIONS: We identified metabolomic associations with dietary intake of dairy, including 3 associations found in 2 independent cohort studies. These results suggest that myristate (14:0) and pantothenate (vitamin B5) are candidate biomarkers of dairy consumption.


Assuntos
Aterosclerose , Miristatos , Adulto , Humanos , Estados Unidos/epidemiologia , Estudos Transversais , Estudos Longitudinais , Biomarcadores , Aterosclerose/epidemiologia , Laticínios/análise , Fatores de Risco , Dieta
18.
Commun Biol ; 6(1): 792, 2023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37524825

RESUMO

Eicosanoids are biologically active derivatives of polyunsaturated fatty acids with broad relevance to health and disease. We report a genome-wide association study in 8406 participants of the Atherosclerosis Risk in Communities Study, identifying 41 loci associated with 92 eicosanoids and related metabolites. These findings highlight loci required for eicosanoid biosynthesis, including FADS1-3, ELOVL2, and numerous CYP450 loci. In addition, significant associations implicate a range of non-oxidative lipid metabolic processes in eicosanoid regulation, including at PKD2L1/SCD and several loci involved in fatty acyl-CoA metabolism. Further, our findings highlight select clearance mechanisms, for example, through the hepatic transporter encoded by SLCO1B1. Finally, we identify eicosanoids associated with aspirin and non-steroidal anti-inflammatory drug use and demonstrate the substantial impact of genetic variants even for medication-associated eicosanoids. These findings shed light on both known and unknown aspects of eicosanoid metabolism and motivate interest in several gene-eicosanoid associations as potential functional participants in human disease.


Assuntos
Aterosclerose , Estudo de Associação Genômica Ampla , Humanos , Eicosanoides/metabolismo , Ácidos Graxos Insaturados , Fígado/metabolismo , Transportador 1 de Ânion Orgânico Específico do Fígado , Receptores de Superfície Celular/metabolismo , Canais de Cálcio
19.
Genome Biol ; 24(1): 150, 2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-37365616

RESUMO

BACKGROUND: The pathophysiological causes of kidney disease are not fully understood. Here we show that the integration of genome-wide genetic, transcriptomic, and proteomic association studies can nominate causal determinants of kidney function and damage. RESULTS: Through transcriptome-wide association studies (TWAS) in kidney cortex, kidney tubule, liver, and whole blood and proteome-wide association studies (PWAS) in plasma, we assess for effects of 12,893 genes and 1342 proteins on kidney filtration (glomerular filtration rate (GFR) estimated by creatinine; GFR estimated by cystatin C; and blood urea nitrogen) and kidney damage (albuminuria). We find 1561 associations distributed among 260 genomic regions that are supported as putatively causal. We then prioritize 153 of these genomic regions using additional colocalization analyses. Our genome-wide findings are supported by existing knowledge (animal models for MANBA, DACH1, SH3YL1, INHBB), exceed the underlying GWAS signals (28 region-trait combinations without significant GWAS hit), identify independent gene/protein-trait associations within the same genomic region (INHBC, SPRYD4), nominate tissues underlying the associations (tubule expression of NRBP1), and distinguish markers of kidney filtration from those with a role in creatinine and cystatin C metabolism. Furthermore, we follow up on members of the TGF-beta superfamily of proteins and find a prognostic value of INHBC for kidney disease progression even after adjustment for measured glomerular filtration rate (GFR). CONCLUSION: In summary, this study combines multimodal, genome-wide association studies to generate a catalog of putatively causal target genes and proteins relevant to kidney function and damage which can guide follow-up studies in physiology, basic science, and clinical medicine.


Assuntos
Insuficiência Renal Crônica , Animais , Insuficiência Renal Crônica/genética , Cistatina C/genética , Proteoma/genética , Transcriptoma , Creatinina , Estudo de Associação Genômica Ampla , Proteômica , Rim
20.
Hypertension ; 80(7): 1494-1506, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37161796

RESUMO

BACKGROUND: The DASH (Dietary Approaches to Stop Hypertension) diets reduced blood pressure (BP) in the DASH and DASH-Sodium trials, but the underlying mechanisms are unclear. We identified metabolites associated with systolic BP or diastolic BP (DBP) changes induced by dietary interventions (DASH versus control arms) in 2 randomized controlled feeding studies-the DASH and DASH-Sodium trials. METHODS: Metabolomic profiling was conducted in serum and urine samples collected at the end of diet interventions: DASH (n=219) and DASH-Sodium (n=395). Using multivariable linear regression models, associations were examined between metabolites and change in systolic BP and DBP. Tested for interactions between diet interventions and metabolites were the following comparisons: (1) DASH versus control diets in the DASH trial (serum), (2) DASH high-sodium versus control high-sodium diets in the DASH-Sodium trial (urine), and (3) DASH low-sodium versus control high-sodium diets in the DASH-Sodium trial (urine). RESULTS: Sixty-five significant interactions were identified (DASH trial [serum], 12; DASH high sodium [urine], 35; DASH low sodium [urine], 18) between metabolites and systolic BP or DBP. In the DASH trial, serum tryptophan betaine was associated with reductions in DBP in participants consuming the DASH diets but not control diets (P interaction, 0.023). In the DASH-Sodium trial, urine levels of N-methylglutamate and proline derivatives (eg, stachydrine, 3-hydroxystachydrine, N-methylproline, and N-methylhydroxyproline) were associated with reductions in systolic BP or DBP in participants consuming the DASH diets but not control diets (P interaction, <0.05 for all tests). CONCLUSIONS: We identified metabolites that were associated with BP lowering in response to dietary interventions. REGISTRATION: URL: https://www. CLINICALTRIALS: gov/ct2/show/NCT03403166; Unique identifier: NCT03403166 (DASH trial). URL: https://www. CLINICALTRIALS: gov/ct2/show/NCT00000608; Unique identifier: NCT00000608 (DASH-Sodium trial).


Assuntos
Hipertensão , Hipotensão , Sódio na Dieta , Humanos , Pressão Sanguínea , Dieta Hipossódica , Sódio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...